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Abstract — The theory of iterated games provide a system framework to explore the players' relationship in a long-term. In this paper we 
consider the iterated prisoner's dilemma game (IPD) played between relatives . Two state automata are used to play infinitely iterated the 
two players where each action can be mis-implemented with small error probability. the payoff matrix using the perturbation approach is 
computed . Using a different values of the average relatedness between players and different values of the payoff variables (R, S, T, P) , 
the behavior of strategies for iterated prisoner's dilemma game in each situation is studied . 
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1 INTRODUCTION                                                                     

     Game theory provides a quantitative framework for 

analyzing the behavior of rational players . The theory of 

iterated games in particular provide a system framework to 

explore the players' relationship in a long-term. It has been an 

important tool in the behavioral and biological sciences and it 

has been often invoked by economists, political scientists, 

anthropologists and other scientists who were interested in 

human cooperation (Axelrod 1984, Aumann 1981,Fudenberg 

and Mask 2007; 1990). 

   The prisoner's dilemma game (Rapoport and Chammah 

1995) is the most famous example of iterated games . The 

(IPD) is now regarded as an ideal experimental platform for 

the evolution of cooperation among selfish players and it 

attracts wide interest since Robert Axelrod's IPD tournaments . 

However, the publication of Axelrod's book in the 1980s was 

largely responsible for bring this research to the attention of 

other areas outside of game theory, including evolutionary 

computation, conflict resolution, evolutionary biology, 

networked computer systems and promoting cooperation 

between opposing countries. Despite the large literature base 

that now exists this is an outstanding area of research. 

    In this paper, we study the iterated prisoner's dilemma 

game in which there is a relationship between the players . 

The average relatedness between the players is given by r, 

which is a number between 0 and 1. A simple way to study 

games between relatives was proposed by Maynard Smith for 

the Hawk-Dove game ( Hines and Smith 1979 ; Grafen 1979 ). 

     In iterated prisoner's dilemma, the two players have two 

options, either to Cooperate (C) or to defect (D). In one-shot 

prisoner's dilemma game ,the strategy D is the best, and it 

dominates the cooperative option . But if this game played 

repeatedly many times then the picture will change. In this 

situation the strategy D will not be the dominant strategy for a 

long time. In iterated games, the number of possible grows 

exponentially with the number of rounds in the game (Nowak 

at el .1995 ; Rubinstein 1986 ). 

    We assume that ,when the players plays the iterated 

Prisoner's Dilemma there is some noise , i.e. In each round, a 

player makes a mistake with probability ε leading to the 

opposite move. Since there is a lot of strategies of (IPD) , we 

just consider all strategies that can be implemented by 

deterministic finite state automata with one or two states.              

    Finite state automata have been used extensively to study 

the iterated games . In our case, we have two states each state 

is labeled by C or D. In state C the player will cooperate in the 

next move ; in state D the player will defect. Each strategy 

starts in one of those two states. Each state has two outgoing 

transitions (either to the same or to the other state): one 

transition specifies what happens if the opponent has 

cooperated and one if the opponent has defected (Zagorsky at 

el. 2013 ; Nowak at el.1995 ) . 

   In (Nowak at el. 1995 ) they studied prisoner's dilemma 

where they used the played repeatedly by two-state automata 

, they computed the 16x16 payoff matrix for limiting case of 

vanishingly a small noise term affecting the interaction . In this 
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paper we define the transition rule of each automaton that 

depends on the initial state of the game and on the payoff of 

last move , and we compute the payoff matrix of iterated 

prisoner's dilemma games in which there is a relationship 

between the players . Then we describe the method that we 

shall follow to compute the 16 x16   payoff matrix for iterated 

prisoner's dilemma game with noise played by finite state 

automata. After calculating the payoff matrix we study the 

effect of different values of average relatedness and different 

values for the payoff values (R , S , T , P) on the behavior of the 

16 strategies . 

 

2  PRISONER'S DILEMMA BETWEEN RELATIVES 

    The Prisoner's Dilemma (PD) is a non-zero sum game 

formulated by the mathematician Tucker building on the ideas 

of Flood and Dresher in 1950 . Since then, it has been 

discussed extensively by game theorists, economists, 

mathematicians, political scientists, biologists, philosophers, 

ethicists, sociologists, and the computer scientists ( Brunauer 

at el. 2007). Many variations of the Prisoner's Dilemma have 

been devised, one of them being the Iterated Prisoner's 

Dilemma (IPD), which is at the center of attention in this 

paper. In this game , the two players have two options, either 

to Cooperate (C) or to defect (D) and the payoff values are 

traditionally called T (for temptation to betray a cooperating 

opponent), S (for sucker's payoff when being betrayed while 

cooperating oneself), P (for punishment when both players 

betray each other), and R (for reward when both players 

cooperate with each other). Their values vary from 

formulation to formulation of the prisoner's dilemma. 

Nevertheless, the inequalities S < P < R < T and 2R > T +S are 

always observed between them. The last one ensures that 

cooperating twice (2R) pays more than alternating one's own 

betrayal of one's partner (T) with allowing oneself to be 

betrayed by him or her (S) . We can represent this game by the 

following payoff   matrix :  

 

                                              (
𝑅 𝑆
𝑇 𝑃

)                                              (1) 

  Now , we assume that this game is played between relatives. 

A simple way to study games between relatives was proposed 

by Maynard Smith for the Hawk- Dove game (Hines and 

Smith 1979 ; Grafen 1979 ). Consider a population where the 

average relatedness between players is given by r, which is a 

number between 0 and 1.There are two possible methods to 

study the games between relatives. The "inclusive fitness " 

method adds to the payoff of a player r times the payoff to his 

co-player .The personal fitness method, proposed by Grafen 

1979 modifies the fitness of the player by allowing for the fact 

that a player is more likely than other players of the 

population to meet co-player adopting the same strategy as 

himself. We regard the inclusive fitness method to study the 

iterated prisoner's dilemma that played by finite state 

automata and subjected to a small error (Hines and Smith 1979 

). If we assume that there is a relationship between the players 

, then by using the inclusive fitness method , the payoff matrix 

of the prisoners dilemma game is given by  

                                                                            

                         (
𝑅(1 + 𝑟) 𝑆 + 𝑟𝑇
𝑇 + 𝑟𝑆 𝑃(1 + 𝑟)

)                                              (2) 

where r is the average relatedness between players , which is a 

number between 0 and 1. 

3  FINITE AUTOMATA AND TRANSITION RULE 

    The potential of the automata theory for the analysis of 

games was first suggested in the economics literature by 

Aumann (1981). Finite-state automata have been used 

extensively to study iterated games including prisoner's 

dilemma (Zagorsky at al. 2013 ) . In this paper we use an 

automata with two states as we mentioned that in 

introduction , each state of the automaton is labeled by C or D 

, in the state C the player will cooperated in the next move , in 

the state D the player will defect .All the strategy starts in one 

of those two states . Each state has two outgoing transition : 

one transition specifies what happens if the opponent has 

cooperated and one if the opponent defected.              

   There are 32 automates with two different states, but some of 

these automaton describe automata with the same behavior . 

Thus there are only 26 automata encoding unique strategies 

(Nowak at el. 1995 ; El Seidy at el. 2013) . These strategies 

include AllC , AllD , Tit-For-Tat (TFT) and Win-Stay, Lose-

shift (WSLS)(Fig.1). 

 
                                       Fig.1 

     Each round leads to one of the four possible outcomes (C,C) 

, (C,D) , (D,C) or (D,D), where the first position denotes the 

option chosen by the player and the second that of the co-

player. These outcomes , from the player's point of view, are 

specified by his payoff R , S , T or P, which can be numbered 

by 1 , 2 , 3 , 4. The 16 possible transition rules can be defined 
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by a quadruple (p1 , p2 , p3 , p4) of zeros and ones .Where pi 

denotes the probability to cooperated after each of the four 

outcomes (C,C),(C,D),(D,C) and (D,D). Thus (1, 1, 1, 1) is the 

rule of cooperate (AllC) and (0, 0, 0, 0) is the rule of defect 

(AllD), while (1, 0, 1, 0) is the rule of imitating the adversary's 

last move. The automata using this rule and with initial state C 

plays Tit-for-Tat. TFT starts in state C and subsequently does 

whatever the opponent did in the last round . This strategy is 

very successful in an error-free environment , but in a noisy 

environment TFT achieves a very low payoff against itself 

since it can only recover from a single error by another error 

(Zagorsky at el. 2013 ) . To simplify , we label these rules by Si 

where i ranges from 1 to 15 and is the integer given . Hence S0 

is AllD and S10 is Tit-for-Tat. 

4 THE COMPETITIONS BETWEEN STRATEGIES WITH 

NOISE 

     How one rule matches against another depends on the 

initial condition of this rule. For example , consider the 

automaton with rule S12 = (1, 1, 0, 0) against the automaton 

with rule S14 = (1, 1, 1, 0) , therefore : 

(a) If both automaton start with C, they keep playing C 

forever, The sequence is: 

S12 : C C C C C C C C::::: 

S14 : C C C C C C C C::::: 

(b) If both automaton start with D , they keep playing D 

forever ,we get: 

S12 : D D D D D D D:::: 

S14 : D D D D D D D:::: 

(c) If S12 starts with C and S14 with D , we get: 

S12 : C C C C C C C:::: 

S14 : D D C C C C C:::: 

(d) If S12 start with D and S14 with C, the result is: 

S12 : D D D D D D D:::: 

S14 : C C C C C C C::::: 

   In the infinitely iterated game , the payoff is the average 

payoff per round , in our example, the player who use the 

transition rule S12 get the payoff  R(1 + r) in cases (a) and (c), 

and P(1 + r) in case (b), and T + rS in case (d).  

    Now, if we assume that the implementation of a move is 

subject to error. This means that there is a small probability ε > 

0, that one state is replaced by another. The corresponding 

transition rule in this case is given by a quadruple like Si but 

with ε instead of 0 and 1- ε  instead of 1. The problem now is 

to compute the payoff for strategy Si (ε) against Sj (ε).For more 

generally, let us consider a strategy E = (e1 , e2 , e3 , e4) and F = (f1 

, f2 , f3 , f4) where ek and fk are the probability to play C after 

outcome k ( k = 1, 2, 3, 4 ) . Therefore , we get the transition 

matrix between the four states R, S, T and P as shown in the 

stochastic matrix (3). 

M= 

(

 

𝑒1𝑓1 𝑒1(1 − 𝑓1) (1 − 𝑒1)𝑓1 (1 − 𝑒1)(1 − 𝑓1)

𝑒2𝑓3 𝑒2(1 − 𝑓3) (1 − 𝑒2)𝑓3 (1 − 𝑒2)(1 − 𝑓3)

𝑒3𝑓2 𝑒3(1 − 𝑓2) (1 − 𝑒3)𝑓2 (1 − 𝑒3)(1 − 𝑓2)

𝑒4𝑓4 𝑒4(1 − 𝑓4) (1 − 𝑒4)𝑓4 (1 − 𝑒4)(1 − 𝑓4))

                                        (3) 

(We note the interchange of 2 and 3, due to the fact that one 

player's S is the other player's T ). If the matrix M is irreducible 

(as is always the case when 0 < ek , fk < 1 for all k , and for 

particular if E and F correspond to strategies Si ), the matrix 

M has a unique left eigenvector α = (α1 , α2 , α3 , α4)to the 

eigenvalue 1 such that 0 < αk for k = 1, 2, 3, 4 and k = 1 . These 

∑ αk denote the relative frequencies of the states k of the 

corresponding Markov chain. They specify the limit in the 

mean payoff for strategy E against strategy F which is α1R + 

α2S + α3T + α4P ,Since our game is played between relatives as 

we assumed , therefore the payoff will be α1R(1+r)+ α2(S+rT)+ 

α3(T +rS)+ α4P(1+r) .the F player's payoff is obtained by 

interchanging α2and α3 . 

    Now , for any noise level ε > 0, we can compute the payoff 

obtained by the automaton using transition rule Si against the 

automaton using transition rule Sj using the following 

approach : (we will exemplify it for S12 against S14 ). The 

four possible initial condition leads to three possible stationary 

states R1;R2, and R3 ,where R1 denotes the run where the both 

player use C. while R2 is the run where the S12-player plays D 

and S14-player plays C and R3 is the run where the both player 

use D. Now , suppose we are in regime R1. A rare perturbation 

cause S12-player to play D, this leads to regime R2 with 

probability 1/2 . Suppose that the perturbation happened in 

regime R2. With probability 1/2 , it cases the S12-player to 

switch from D to C .If this happens while S14-player plays C, 

we are in regime R1, but if S14-player plays D, this leads to 

regime R3. Suppose now that the perturbation occurs in regime 

R3 , with probability 1/2 , it cases the S12-player to switch from 

D to C if this happens while S14-player plays D, we are in 

regime R1 suppose now that the perturbation affects the S14-

player, He plays C instead of D, while S12-player plays D, this 

leads to regime R2.Thus the perturbation of R1 leads with 

probability 1/2 to R2 , and the perturbation of R2 leads with 

probability 1/2 to R1 and with probability 1/2 to R3 , while R3 

leads with probability 1/2 to R1 and with probability 1/2 to R2. 

The corresponding transition matrix is: 
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(

 
 

1

2

1

2
0

1

2
0

1

2
1

2

1

2
0
)

 
 

                         (4)                                                                 

and the corresponding stationary distribution is ( 1/2 , 1/3 , 

1/6).Therefore ,the S12-player receives the average payoff 1 

/2R(1 + r) + 1/3 (T + rS) + 1/6P(1 + r) per round. This method , 

repeated for each of the 256 entries, leads to the 16x16 payoff 

matrix (Table 2).Now, we said that a strategy Si is out 

competed by strategy Sj if the following conditions are 

satisfied : V (Sj , Si) ≥ V (Si , Si) and V (Sj , Sj) ≥ V (Si , Sj). For 

example, the payoff matrix between the S12-player and S14-

player ,after substituting with Axelrod's payoff values (R = 3, S 

= 0, T = 5, P = 1) and assume that the average relatedness 

between the players is 0.5 , is given by : 

 

                                  (
3.38 4.17
3.33 4.5

)                              (5)                                                              

Then , we notice that V (S14 , S14) > V (S12 , S14) , but V (S14 , S12) < 

V (S12 , S12) , therefore the strategy S12 is not out competed by 

the strategy S14 . 

5 THE EFFICIENCY OF AVERAGE RELATEDNESS ON THE 

BEHAVIOR OF STRATEGIES 

    In this section we study the behavior of strategies and the 

effect of the average relatedness (r) between players on 

cooperative , defective and other behaviors in competition 

between strategies . we use different values for r and different 

values for the variables of payoff values (R , S , T , P). In Table 

1 we summarize all strategies that out compete the strategy Si 

in each situation that we studied and we see that : 

(a)For the payoff values (R = 3, S = 0, T = 5, P = 1) and for r = 

0.0001 and r = 0.999 , we get from tables (1), (3) and (4) : If the 

average relatedness between players was small, such that r = 

0.0001 , then we see that all strategies are out competed by at 

least two other strategies . also we note that the strategy S0 

(AllD) can defeat the greatest number of strategies (exactly 12), 

while the strategy S6 (idiot strategy) cannot defeat any other 

strategy . Strategies S14 and S15 are the weakest strategies , they 

out competed by exactly 11 strategies . here , the cooperative 

strategies are invaded by a defective strategies. In this case we 

note that the strategy S9 (called Win-Stay Lose-Shift or Pavlov) 

is out competed by three strategies , which mean whenever 

the average of relatedness is low , then the strategy S9 (and the 

other cooperative strategies) is invaded by other strategies. 

The strategy TFT or S10 make a good work and defeat the 

defective strategies like Grim (S8) , AllD( S0) ,and S1 . If the 

average relatedness between players was large , such that r = 

0.999 , then we see that all strategies except S9, S14 and S15 are 

out competed by at least three other strategies .the strategies S9 

, S14 and S15 are defeat all other strategies while the strategy S6 

cannot defeat any other strategy . Also when the average 

relatedness between players is high then the strategies S0 = (0 , 

0 , 0 , 0) (a defective strategy) and S8 = (1 , 0 , 0 , 0) (a retaliator 

who never relents after a defection ) are out competed by the 

largest number of strategies (exactly by 11 strategies). The 

ordered paired of equilibrium strategies in both cases are (S0 , 

S8) , (S3 , S12) , (S5 , S10) and (S14 , S15).  

 
Table 1: the strategies that out compete the strategy Si (i = 0, 1, 

, 15) with different values of R, S, T, P and r. 

(b) If the payoff values were as follow (R = 0 , S = 1 , T = 1 , P = 

10) (called the chicken game) and for r = 0.0001 and 0.999, from 

tables (1) , (5) and (6) : for r = 0.0001 , the defective strategies 

show some activity and trying to avoid invasion by other 

strategies , but they cannot avoid TFT and WSLS strategies. 

The strategy WSLS is the strongest strategy and no other 

strategy can defeat it .Some strategies like S5 are ambitious and 

try to invade other strategies . The ordered paired of 

equilibrium strategies are (S0 , S8) , (S3 , S12) , (S5 , S10) , (S9 , S11) , 

(S11 , S13) , (S11 , S14) , (S11 , S15) and (S14 , S15). If we assume that r = 

0.999 the cooperative strategies S13 , S14 , S15 and the WSLS(S9) or 

Pavlov strategy are dominating other strategies and no other 

strategy can defeat any one of them . In this case the defective 

strategies as GRIM (S8) and AllD are invaded by cooperative 

 𝑆12  𝑆14 

 𝑆12 

 𝑆14 
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strategies and then the cooperative behavior will be evolve 

between the players. The ordered paired of equilibrium 

strategies are (S0 , S8) , (S3 , S12) , (S5 , S10) , (S9 , S11) , (S9 , S13) , (S9 , 

S14) , (S9 , S15) , (S11 , S13) , (S11 , S14) , (S11 , S15) , (S13 , S14) , (S13 , S15)  

and (S14  S15). 

(c) In which the payoff values were (R = 5 , S = 0 , T = 1 , P = 3) 

and r = (0.0001and 0.999), therefore from tables (1) , (7) and (8) 

we see that when the average relatedness between players is 

small , such that r = 0.0001,we see that there is a strong 

competition between defective and cooperative strategies. 

some strategies such as WSLS , AllC and AllD. no other 

strategy can out compete them, however if the average 

relatedness between players was large , such that r = 0.999, the 

defective strategies like Grim(S8) become stronger and no 

other strategy can defeat it . Some strategies are not affected 

by the values of r such as WSLS or Pavlov, AllC and AllD and 

other strategies .In two cases the ordered paired of 

equilibrium strategies are (S0 , S8) , (S3 , S12) , (S5 , S10) , and (S14 , 

S15).  

CONCLUSION 

  We have studied in this paper the iterated games played by 

finite state automata . We consider a relationship between the 

players who plays this game, this relationship is given by an 

average relatedness parameters r where 0 ≤ r ≤ 1. We assumed 

that the automata are subjected to some small error , this error 

due to implementation of what the other player does .We 

computed the 16x16-payoff matrix of iterated prisoner's 

dilemma game between relatives with noise which played 

by finite state automata . We studied this game with different 

values of R , S , T and P and different values of average 

relatedness between players . 

   For the payoff values (R = 3 , S = 0 , T = 5 , P = 1) and for r = 

0.999 and r = 0.0001 we concluded that , all strategies are out 

competed by at least two other strategies except for , the 

strategy WSLS(S9) or Pavlov if r=0.999 there is no strategy can 

defeat this strategy . Also the strategy S6 does not affected by 

the relatedness average , it is a weak strategy in both cases. We 

saw that whenever there is a large degree of kinship , the 

cooperation evolve between the players, and the cooperative 

strategies are dominate . while if there is a small degree of 

kinship , the defective strategies will dominate and the 

defective behavior between players will evolve. If we change 

the order of payoff values such that(R = 0 , S = 1 , T = 1 , P = 10) 

(for the chicken game) , we found that whenever a small 

degree of kinship between players , the defective strategies 

show some activity and trying to avoid invasion by other 

strategies . In this case the strategy WSLS (S9) or Pavlov is the 

strongest strategy and doesn't affected by the values of r .In 

case that R > P > T > S and such that (R = 5 , S = 0 , T = 1 ,  P = 3) 

, there is a strong competition between defective and 

cooperative strategies . Almost all the strategies are not 

significantly affected by degree of kinship between the two 

players . the strategy TFT(S10)for large degree of kinship 

between players is not successful and exposed to invasion 

by AllD ,WSLS or Pavlov , Grim , AllC and other strategies 

.here the direct reciprocity behavior in not the best respond for 

each players .  
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Table 1 . the payoff matrix  of repeated prisoner’s dilemma between relatives with error in implementation 

 

𝑆5 𝑆4 𝑆3 𝑆2 𝑆1 𝑆0 

𝑇 + 𝑟𝑆 
𝑇 + 2𝑃

3
+
𝑟(𝑆 +2 𝑃)

3
 

𝑇 + 𝑃

2
+
𝑟(𝑆 + 𝑃)

2
 𝑃(1 + 𝑟) 

𝑇 + 𝑃

2
+
𝑟(𝑆 + 𝑃)

2
 𝑃(1 + 𝑟) 𝑆0 

𝑅 + 𝑇 + 𝑃

3
+
𝑟(𝑅 + 𝑆 + 𝑃)

3
 

2𝑆 + 𝑇 + 2𝑃

5
+
𝑟(2 𝑇 + 𝑆 + 2𝑃)

5
 

𝑅 + 𝑃

2
(1 + 𝑟) 

𝑆 + 𝑇 + 𝑃

3
(1 + 𝑟) 

𝑅 + 𝑃

2
(1 + 𝑟) 

𝑆 + 𝑃

2
+
𝑟(𝑇 + 𝑃)

2
 𝑆1 

𝑅 + 𝑇 + 𝑃

3
+
𝑟(𝑅 + 𝑆 + 𝑃)

3
 𝑃(1 + 𝑟) 

𝑆 + 𝑇

2
(1 + 𝑟) 

𝑆 + 𝑇 + 2𝑃

4
+
𝑟(𝑇 + 𝑆 + 2 𝑃)

4
 

𝑅 + 𝑃

2
(1 + 𝑟) 𝑃(1 + 𝑟) 𝑆2 

𝑅 + 𝑃

2
(1 + 𝑟) 

𝑆 + 𝑃

2
+
𝑟(𝑇 + 𝑃)

2
 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑆 + 𝑇

2
(1 + 𝑟) 

𝑅 + 𝑃

2
(1 + 𝑟) 

𝑆 + 𝑃

2
+
𝑟(𝑇 + 𝑃)

2
 𝑆3 

𝑇 + 𝑟𝑆 
𝑆 + 𝑇 + 2𝑃

4
+
𝑟(𝑇 + 𝑆 + 2 𝑃)

4
 

𝑇 + 𝑃

2
+
𝑟(𝑆 + 𝑃)

2
 𝑃(1 + 𝑟) 

𝑆 + 2𝑇 + 2𝑃

5
+
𝑟(𝑇 + 2 𝑆 + 2 𝑃)

5
 

𝑆 + 2𝑃

3
+
𝑟(𝑇 + 2 𝑃)

3
 𝑆4 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 𝑇 + 𝑟𝑆 

𝑅 + 𝑃

2
(1 + 𝑟) 

𝑅 + 𝑆 + 𝑃

3
+
𝑟(𝑅 + 𝑇 + 𝑃)

3
 

𝑅 + 𝑆 + 𝑃

3
+
𝑟(𝑅 + 𝑇 + 𝑃)

3
 𝑇 + 𝑟𝑆 𝑆5 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑆 + 2𝑃

3
+
𝑟(𝑇 + 2 𝑃)

3
 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 𝑃(1 + 𝑟) 𝑇 + 𝑟𝑆 

𝑆 + 𝑃

2
+
𝑟(𝑇 + 𝑃)

2
 𝑆6 

𝑅 + 𝑆 + 𝑃

3
+
𝑟(𝑅 + 𝑇 + 𝑃)

3
 𝑇 + 𝑟𝑆 

𝑅 + 𝑃

2
(1 + 𝑟) 

𝑅 + 𝑆 + 𝑃

3
+
𝑟(𝑅 + 𝑇 + 𝑃)

3
 

𝑅 + 2𝑆 + 𝑃

4
+
𝑟(𝑅 + 2 𝑇 + 𝑃)

4
 𝑇 + 𝑟𝑆 𝑆7 

𝑇 + 𝑟𝑆 
𝑇 + 2𝑃

3
+
𝑟(𝑆 +2 𝑃)

3
 

𝑇 + 𝑃

2
+
𝑟(𝑆 + 𝑃)

2
 𝑃(1 + 𝑟) 

𝑇 + 𝑃

2
+
𝑟(𝑆 + 𝑃)

2
 𝑃(1 + 𝑟) 𝑆8 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

2𝑆 + 𝑇 + 2𝑃

5
+
𝑟(2 𝑇 + 𝑆 + 2𝑃)

5
 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑆 + 𝑇 + 𝑃

3
(1 + 𝑟) 

𝑅 + 𝑆 + 𝑃

3
+
𝑟(𝑅 + 𝑇 + 𝑃)

3
 

𝑆 + 𝑃

2
+
𝑟(𝑇 + 𝑃)

2
 𝑆9 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 𝑃(1 + 𝑟) 

𝑆 + 𝑇

2
(1 + 𝑟) 

𝑆 + 𝑇 + 𝑃

3
(1 + 𝑟) 

𝑆 + 𝑇 + 𝑃

3
(1 + 𝑟) 𝑃(1 + 𝑟) 𝑆10 

𝑅 + 𝑆 + 𝑃

3
+
𝑟(𝑅 + 𝑇 + 𝑃)

3
 

𝑆 + 𝑃

2
+
𝑟(𝑇 + 𝑃)

2
 

𝑆 + 𝑇

2
(1 + 𝑟) 

𝑆 + 𝑇

2
(1 + 𝑟) 

𝑅 + 𝑆 + 𝑃

3
+
𝑟(𝑅 + 𝑇 + 𝑃)

3
 

𝑆 + 𝑃

2
+
𝑟(𝑇 + 𝑃)

2
 𝑆11 

𝑆 + 𝑇

2
(1 + 𝑟) (3S+T+P)/6+r*(3T+S+P)/6 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑅 + 𝑆 + 2𝑃

4
+
𝑟(𝑅 + 𝑇 + 2 𝑃)

4
 

2𝑆 + 𝑇 + 𝑃

4
+
𝑟(2 𝑇 + 𝑆 + 𝑃)

4
 

𝑆 + 𝑃

2
+
𝑟(𝑇 + 𝑃)

2
 𝑆12 

𝑇 + 𝑟𝑆 𝑇 + 𝑟𝑆 
𝑅 + 𝑆

2
+
𝑟(𝑅 + 𝑇)

2
 

𝑅 + 𝑆

2
+
𝑟(𝑅 + 𝑇)

2
 𝑇 + 𝑟𝑆 𝑇 + 𝑟𝑆 𝑆13 

𝑇 + 𝑟𝑆 
2𝑆 + 𝑃

3
+
𝑟(2𝑇 +   𝑃)

3
 

𝑅 + 𝑆

2
+
𝑟(𝑅 + 𝑇)

2
 

2𝑅 + 2𝑆 + 𝑃

5
+
𝑟(2 𝑅 + 2 𝑇 + 𝑃)

5
 𝑇 + 𝑟𝑆 

2𝑆 + 𝑃

3
+
𝑟(2𝑇 +   𝑃)

3
 𝑆14 

𝑇 + 𝑟𝑆 𝑇 + 𝑟𝑆 
𝑅 + 𝑆

2
+
𝑟(𝑅 + 𝑇)

2
 

𝑅 + 𝑆

2
+
𝑟(𝑅 + 𝑇)

2
 𝑇 + 𝑟𝑆 𝑇 + 𝑟𝑆 𝑆15 
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𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 

𝑆0 
𝑇 + 𝑃

2
+
𝑟(𝑆 + 𝑃)

2
 𝑇 + 𝑟𝑆 𝑃(1 + 𝑟) 

𝑇 + 𝑃

2
+
𝑟(𝑆 + 𝑃)

2
 𝑃(1 + 𝑟) 

𝑆1 𝑇 + 𝑟𝑆 
𝑅 + 2𝑇 + 𝑃

4
+
𝑟(𝑅 + 2 𝑆 + 𝑃)

4
 

𝑆 + 𝑃

2
+
𝑟(𝑇 + 𝑃)

2
 

𝑅 + 𝑇 + 𝑃

3
+
𝑟(𝑅 + 𝑆 + 𝑃)

3
 

𝑆 + 𝑇 + 𝑃

3
(1 + 𝑟) 

𝑆2 𝑃(1 + 𝑟) 
𝑅 + 𝑇 + 𝑃

3
+
𝑟(𝑅 + 𝑆 + 𝑃)

3
 𝑃(1 + 𝑟) 

𝑆 + 𝑇 + 𝑃

3
(1 + 𝑟) 

𝑆 + 𝑇 + 𝑃

3
(1 + 𝑟) 

𝑆3 
𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑅 + 𝑃

2
(1 + 𝑟) 

𝑆 + 𝑃

2
+
𝑟(𝑇 + 𝑃)

2
 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑆 + 𝑇

2
(1 + 𝑟) 

𝑆4 𝑇 + 2𝑃

3
+
𝑟(𝑆 +2 𝑃)

3
 𝑇 + 𝑟𝑆 

𝑆 + 2𝑃

3
+
𝑟(𝑇 + 2 𝑃)

3
 

𝑆 + 2𝑇 + 2𝑃

5
+
𝑟(𝑇 + 2 𝑆 + 2 𝑃)

5
 𝑃(1 + 𝑟) 

𝑆5 
𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑅 + 𝑇 + 𝑃

3
+
𝑟(𝑅 + 𝑆 + 𝑃)

3
 𝑇 + 𝑟𝑆 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑆6 𝑃(1 + 𝑟) 
𝑅 + 𝑆 + 𝑃

3
+
𝑟(𝑅 + 𝑇 + 𝑃)

3
 

2𝑆 + 𝑃

3
+
𝑟(2𝑇 +   𝑃)

3
 𝑇 + 𝑟𝑆 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑆7 
𝑅 + 𝑆 + 𝑃

3
+
𝑟(𝑅 + 𝑇 + 𝑃)

3
 

𝑅 + 𝑃

2
(1 + 𝑟) 𝑇 + 𝑟𝑆 𝑇 + 𝑟𝑆 

𝑅 + 𝑆 + 𝑇

3
(1 + 𝑟) 

𝑆8 2𝑇 + 𝑃

3
+
𝑟(2𝑆 + 𝑃)

3
 𝑇 + 𝑟𝑆 𝑃(1 + 𝑟) 

𝑅 + 2𝑇 + 2𝑃

5
+
𝑟(𝑅 + 2 𝑆 + 2 𝑃)

5
 𝑃(1 + 𝑟) 

𝑆9 𝑇 + 𝑟𝑆 𝑇 + 𝑟𝑆 
𝑅 + 2𝑇 + 2𝑃

5
+
𝑟(𝑅 + 2 𝑆 + 2 𝑃)

5
 𝑅(1 + 𝑟) 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑆10 
𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑅 + 𝑆 + 𝑇

3
(1 + 𝑟) 𝑃(1 + 𝑟) 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑆11 
𝑅 + 𝑆 + 𝑇

3
(1 + 𝑟) 

𝑅 + 𝑆 + 𝑇

3
(1 + 𝑟) 

𝑅 + 2𝑆 + 2𝑃

5
+
𝑟(𝑅 + 2 𝑇 + 2 𝑃)

5
 𝑅(1 + 𝑟) 

𝑅 + 𝑆 + 𝑇

3
(1 + 𝑟) 

𝑆12 
𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑅 + 𝑆 + 2𝑇

4
+
𝑟(𝑅 + 𝑇 + 2 𝑆)

4
 

𝑅 + 2𝑆 + 3𝑃

6
+
𝑟(𝑅 + 2 𝑇 +3 𝑃)

6
 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑅 + 𝑃

2
(1 + 𝑟) 

𝑆13 
2𝑅 + 2𝑆 + 𝑃

5
+
𝑟(2 𝑅 + 2 𝑇 + 𝑃)

5
 

2𝑅 + 2𝑆 + 𝑃

5
+
𝑟(2 𝑅 + 2 𝑇 + 𝑃)

5
 

𝑅 + 2𝑆

3
+
𝑟(𝑅 + 2 𝑇)

3
 

2𝑅 + 𝑆

3
+
𝑟(2𝑅 +   𝑇)

3
 𝑅(1 + 𝑟) 

𝑆14 
2𝑅 + 2𝑆 + 𝑃

5
+
𝑟(2 𝑅 + 2 𝑇 + 𝑃)

5
 

𝑅 + 𝑆

2
+
𝑟(𝑅 + 𝑇)

2
 

𝑅 + 2𝑆 + 𝑃

4
+
𝑟(𝑅 + 2 𝑇 + 𝑃)

4
 

𝑅 + 2𝑆

3
+
𝑟(𝑅 + 2 𝑇)

3
 𝑅(1 + 𝑟) 

𝑆15 
𝑅 + 𝑆

2
+
𝑟(𝑅 + 𝑇)

2
 

𝑅 + 𝑆

2
+
𝑟(𝑅 + 𝑇)

2
 

𝑅 + 2𝑆

3
+
𝑟(𝑅 + 2 𝑇)

3
 

𝑅 + 𝑆

2
+
𝑟(𝑅 + 𝑇)

2
 𝑅(1 + 𝑟) 
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𝑆11 𝑆12 𝑆13 𝑆14 𝑆15 

𝑆0 
𝑇 + 𝑃

2
+
𝑟(𝑆 + 𝑃)

2
 

𝑇 + 𝑃

2
+
𝑟(𝑆 + 𝑃)

2
 𝑇 + 𝑟𝑆 

2𝑇 + 𝑃

3
+
𝑟(2𝑆 + 𝑃)

3
 𝑇 + 𝑟𝑆 

𝑆1 
𝑅 + 𝑇 + 𝑃

3
+
𝑟(𝑅 + 𝑆 + 𝑃)

3
 

𝑆 + 2𝑇 + 𝑃

4
+
𝑟(  𝑇 +2 𝑆 + 𝑃)

4
 𝑇 + 𝑟𝑆 𝑇 + 𝑟𝑆 𝑇 + 𝑟𝑆 

𝑆2 
𝑆 + 𝑇

2
(1 + 𝑟) 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑅 + 𝑇

2
+
𝑟(𝑅 + 𝑆)

2
 

2𝑅 + 2𝑇 + 𝑃

5
+
𝑟(2 𝑅 + 2 𝑆 + 𝑃)

5
 

𝑅 + 𝑇

2
+
𝑟(𝑅 + 𝑆)

2
 

𝑆3 
𝑆 + 𝑇

2
(1 + 𝑟) 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

𝑅 + 𝑇

2
+
𝑟(𝑅 + 𝑆)

2
 

𝑅 + 𝑇

2
+
𝑟(𝑅 + 𝑆)

2
 

𝑅 + 𝑇

2
+
𝑟(𝑅 + 𝑆)

2
 

𝑆4 
𝑇 + 𝑃

2
+
𝑟(𝑆 + 𝑃)

2
 

𝑆 + 3𝑇 + 2𝑃

6
+
𝑟(𝑇 + 3 𝑆 + 2 𝑃)

6
 𝑇 + 𝑟𝑆 

2𝑇 + 𝑃

3
+
𝑟(2𝑆 + 𝑃)

3
 𝑇 + 𝑟𝑆 

𝑆5 
𝑅 + 𝑇 + 𝑃

3
+
𝑟(𝑅 + 𝑆 + 𝑃)

3
 

𝑆 + 𝑇

2
(1 + 𝑟) 𝑇 + 𝑟𝑆 𝑇 + 𝑟𝑆 𝑇 + 𝑟𝑆 

𝑆6 
𝑅 + 𝑆 + 𝑃

3
+
𝑟(𝑅 + 𝑇 + 𝑃)

3
 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

2𝑅 + 𝑆 + 2𝑇

5
+
𝑟(2 𝑅 + 𝑇 + 2 𝑆)

5
 

2𝑅 + 2𝑇 + 𝑃

5
+
𝑟(2 𝑅 + 2 𝑆 + 𝑃)

5
 

𝑅 + 𝑇

2
+
𝑟(𝑅 + 𝑆)

2
 

𝑆7 
𝑅 + 𝑆 + 𝑇

3
(1 + 𝑟) 

𝑅 + 2𝑆 + 𝑇

4
+
𝑟(𝑅 + 2 𝑇 + 𝑆)

4
 

2𝑅 + 𝑆 + 2𝑇

5
+
𝑟(2 𝑅 + 𝑇 + 2 𝑆)

5
 

𝑅 + 𝑇

2
+
𝑟(𝑅 + 𝑆)

2
 

𝑅 + 𝑇

2
+
𝑟(𝑅 + 𝑆)

2
 

𝑆8 
𝑅 + 2𝑇 + 2𝑃

5
+
𝑟(𝑅 + 2𝑆 + 2𝑃)

5
 

𝑅 + 2𝑇 + 3𝑃

6
+
𝑟(𝑅 + 2 𝑆 + 3 𝑃)

6
 

𝑅 + 2𝑇

3
+
𝑟(𝑅 + 2 𝑆)

3
 

𝑅 + 2𝑇

3
+
𝑟(𝑅 + 2 𝑆)

3
 

𝑅 + 2𝑇

3
+
𝑟(𝑅 + 2 𝑆)

3
 

𝑆𝑆 𝑅(1 + 𝑟) 
𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

2𝑅 + 𝑇

3
+
𝑟(2𝑅 +   𝑆)

3
 

𝑅 + 2𝑇

3
+
𝑟(𝑅 + 2 𝑆)

3
 

𝑅 + 𝑇

2
+
𝑟(𝑅 + 𝑆)

2
 

𝑆10 
𝑅 + 𝑆 + 𝑇

3
(1 + 𝑟) 

𝑅 + 𝑃

2
(1 + 𝑟) 𝑅(1 + 𝑟) 𝑅(1 + 𝑟) 𝑅(1 + 𝑟) 

𝑆11 
2𝑅 + 𝑆 + 𝑇

4
(1 + 𝑟) 

2𝑅 + 𝑆 + 𝑃

4
+
𝑟(2 𝑅 + 𝑇 + 𝑃)

4
 𝑅(1 + 𝑟) 𝑅(1 + 𝑟) 𝑅(1 + 𝑟) 

𝑆12 
2𝑅 + 𝑇 + 𝑃

4
+
𝑟(2 𝑅 + 𝑆 + 𝑃)

4
 

𝑅 + 𝑆 + 𝑇 + 𝑃

4
+
𝑟(𝑅 + 𝑆 + 𝑇 + 𝑃)

4
 

2𝑅 + 𝑆 + 3𝑇

6
+
𝑟(2 𝑅 + 𝑇 + 3 𝑆)

6
 

3𝑅 + 2𝑇 + 𝑃

6
+
𝑟(3 𝑅 + 2 𝑆 + 𝑃)

6
 

𝑅 + 𝑇

2
+
𝑟(𝑅 + 𝑆)

2
 

𝑆13 𝑅(1 + 𝑟) 
2𝑅 + 3𝑆 + 𝑇

6
+
𝑟(2 𝑅 + 3 𝑇 + 𝑆)

6
 

2𝑅 + 𝑆 + 𝑇

4
(1 + 𝑟) 

2𝑅 + 𝑇

3
+
𝑟(2𝑅 +   𝑆)

3
 

2𝑅 + 𝑇

3
+
𝑟(2𝑅 +   𝑆)

3
 

𝑆14 𝑅(1 + 𝑟) 
3𝑅 + 2𝑆 + 𝑃

6
+
𝑟(3 𝑅 + 2 𝑇 + 𝑃)

6
 

2𝑅 + 𝑆

3
+
𝑟(2𝑅 +   𝑇)

3
 𝑅(1 + 𝑟) 𝑅(1 + 𝑟) 

𝑆15 𝑅(1 + 𝑟) 
𝑅 + 𝑆

2
+
𝑟(𝑅 + 𝑇)

2
 

2𝑅 + 𝑆

3
+
𝑟(2𝑅 +   𝑇)

3
 𝑅(1 + 𝑟) 𝑅(1 + 𝑟) 
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Table 2 . the payoff matrix  of repeated prisoner’s dilemma between relatives with error in implementation with Axelrod values (R=3,T=5,S=0,P=1) and r=0.0001 

𝑆15 𝑆14 𝑆13 𝑆12 𝑆11 𝑆10 𝑆9 𝑆8 𝑆7 𝑆6 𝑆5 𝑆4 𝑆3 𝑆2 𝑆1 𝑆0 

5.00 3.67 5.00 3.00 3.00 1.00 3.00 1.00 5.00 3.00 5.00 2.33 3.00 1.00 3.00 1.00 𝑆0 

5.00 5.00 5.00 2.75 3.00 2.00 3.00 0.50 3.50 5.00 3.00 1.40 2.00 2.00 2.00 0.50 𝑆1 

4.00 3.40 4.00 2.50 2.50 2.00 2.00 1.00 3.00 1.00 3.00 1.00 2.50 1.75 2.00 1.00 𝑆2 

4.00 4.00 4.00 2.25 2.50 2.50 2.25 0.50 2.00 2.25 2.00 0.50 2.25 2.50 2.00 0.50 𝑆3 

5.00 3.67 5.00 2.83 3.00 1.00 2.40 0.67 5.00 2.33 5.00 1.75 3.00 1.00 2.40 0.67 𝑆4 

5.00 5.00 5.00 2.50 3.00 2.25 2.25 5.00 3.00 2.25 2.25 5.00 2.00 1.33 1.33 5.00 𝑆5 

4.00 3.40 3.20 2.25 1.33 2.25 5.00 0.33 1.33 1.00 2.25 0.67 2.25 1.00 5.00 0.50 𝑆6 

4.00 4.00 3.20 2.00 2.67 2.67 5.00 5.00 2.00 1.33 1.33 5.00 2.00 1.33 1.00 5.00 𝑆7 

4.33 4.33 4.33 2.67 3.00 1.00 3.00 1.00 5.00 3.67 5.00 2.33 3.00 1.00 3.00 1.00 𝑆8 

4.00 4.33 3.67 2.25 3.00 2.25 3.00 1.00 5.00 5.00 2.25 1.40 2.25 2.00 1.33 0.50 𝑆9 

3.00 3.00 3.00 2.00 2.67 2.25 2.25 1.00 2.67 2.25 2.25 1.00 2.50 2.00 2.00 1.00 𝑆10 

3.00 3.00 3.00 1.75 2.75 2.67 3.00 1.00 2.67 2.67 1.33 0.50 2.50 2.50 1.33 0.50 𝑆11 

4.00 3.33 3.50 2.25 3.00 2.00 2.25 1.00 3.25 2.25 2.50 1.00 2.25 1.25 1.50 0.50 𝑆12 

3.67 3.67 2.75 1.83 3.00 3.00 2.00 1.00 2.20 2.20 5.00 5.00 1.50 1.50 5.00 5.00 𝑆13 

3.00 3.00 2.00 1.67 3.00 3.00 1.00 1.00 1.50 1.40 5.00 0.33 1.50 1.40 5.00 0.33 𝑆14 

3.00 3.00 2.00 1.50 3.00 3.00 1.50 1.00 1.50 1.50 5.00 5.00 1.50 1.50 5.00 5.00 𝑆15 

 
Table 3 . the payoff matrix  of repeated prisoner’s dilemma between relatives with error in implementation with Axelrod values (R=3,T=5,S=0,P=1) and r=0.999  

𝑆15 𝑆14 𝑆13 𝑆12 𝑆11 𝑆10 𝑆9 𝑆8 𝑆7 𝑆6 𝑆5 𝑆4 𝑆3 𝑆2 𝑆1 𝑆0 

5.00 4.00 5.00 3.50 3.50 2.00 3.50 2.00 5.00 3.50 5.00 3.00 3.50 2.00 3.50 2.00 𝑆0 

5.00 5.00 5.00 4.25 4.33 4.00 4.33 3.50 4.50 5.00 4.33 3.80 4.00 4.00 4.00 3.50 𝑆1 

5.50 4.80 5.50 3.75 5.00 4.00 4.00 2.00 4.33 2.00 4.33 2.00 5.00 3.25 4.00 2.00 𝑆2 

5.50 5.50 5.50 4.50 5.00 5.00 4.50 3.50 4.00 4.50 4.00 3.50 4.50 5.00 4.00 3.50 𝑆3 

5.00 4.00 5.00 4.00 3.50 2.00 3.80 3.00 5.00 3.00 5.00 3.50 3.50 2.00 3.80 3.00 𝑆4 

5.00 5.00 5.00 5.00 4.33 4.50 4.50 5.00 4.33 4.50 4.50 5.00 4.00 4.33 4.33 5.00 𝑆5 

5.50 4.80 5.40 4.50 4.33 4.50 5.00 4.00 4.33 2.00 4.50 2.66 4.50 2.00 5.00 3.50 𝑆6 

5.50 5.50 5.40 5.25 5.33 5.33 5.00 5.00 4.00 4.33 4.33 5.00 4.00 4.33 4.50 5.00 𝑆7 

5.33 5.33 5.33 3.67 4.00 2.00 4.00 2.00 5.00 4.00 5.00 3.00 3.50 2.00 3.50 2.00 𝑆8 

5.50 5.33 5.66 4.50 6.00 4.50 6.00 4.00 5.00 5.00 4.50 3.80 4.50 4.00 4.33 3.50 𝑆9 

6.00 6.00 6.00 4.00 5.33 4.50 4.50 2.00 5.33 4.50 4.50 2.00 5.00 4.00 4.00 2.00 𝑆10 

6.00 6.00 6.00 4.75 5.50 5.33 6.00 4.00 5.33 5.33 4.33 3.50 5.00 5.00 4.33 3.50 𝑆11 

5.50 5.00 5.33 4.50 4.75 4.00 4.50 3.66 5.25 4.50 5.00 3.66 4.50 3.75 4.25 3.50 𝑆12 

5.66 5.66 5.50 5.33 6.00 6.00 5.66 5.33 5.40 5.40 5.00 5.00 5.50 5.50 5.00 5.00 𝑆13 

6.00 6.00 5.66 5.00 6.00 6.00 5.33 4.50 5.50 4.80 5.00 4.00 5.50 4.80 5.00 4.00 𝑆14 

6.00 6.00 5.66 5.50 6.00 6.00 5.50 5.33 5.50 5.50 5.00 5.00 5.50 5.50 5.00 5.00 𝑆15 
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Table 4 . the payoff matrix  of repeated prisoner’s dilemma between relatives with error in implementation with Axelrod values (R=0,T=1,S=-1,P=-10) and r=0.0001  

𝑆15 𝑆14 𝑆13 𝑆12 𝑆11 𝑆10 𝑆9 𝑆8 𝑆7 𝑆6 𝑆5 𝑆4 𝑆3 𝑆2 𝑆1 𝑆0 

1.00 -2.67 1.00 -4.50 -4.50 -10.00 -4.50 -10.00 1.00 -4.50 1.00 -6.33 -4.50 -10.00 -4.50 -10.00 𝑆0 

1.00 1.00 1.00 -2.25 -3.00 -3.33 -3.00 -5.50 -2.00 1.00 -3.00 -4.20 -5.00 -3.33 -5.00 -5.50 𝑆1 

0.50 -1.60 0.50 -4.75 0.00 -3.33 -3.33 -10.00 -3.00 -10.00 -3.00 -10.00 0.00 -5.00 -5.00 -10.00 𝑆2 

0.50 0.50 0.50 -2.50 0.00 0.00 -2.50 -5.50 -5.00 -2.50 -5.00 -5.50 -2.50 0.00 -5.00 -5.50 𝑆3 

1.00 -2.67 1.00 -3.00 -4.50 -10.00 -3.80 -7.00 1.00 -6.33 1.00 -5.00 -4.50 -10.00 -3.80 -7.00 𝑆4 

1.00 1.00 1.00 0.00 -3.00 -2.50 -2.50 1.00 -3.00 -2.50 -2.50 1.00 -5.00 -3.67 -3.67 1.00 𝑆5 

0.50 -1.60 0.20 -2.50 -3.67 -2.50 1.00 -4.00 -3.67 -10.00 -2.50 -7.00 -2.50 -10.00 1.00 -5.50 𝑆6 

0.50 0.50 0.20 -0.25 0.00 0.00 1.00 1.00 -5.00 -3.67 -3.67 1.00 -5.00 -3.67 -3.00 1.00 𝑆7 

0.67 0.67 0.67 -4.67 -3.60 -10.00 -3.60 -10.00 1.00 -2.67 1.00 -6.33 -4.50 -10.00 -4.50 -10.00 𝑆8 

0.50 0.67 0.33 -2.50 0.00 -2.50 0.00 -4.40 1.00 1.00 -2.50 -4.20 -2.50 -3.33 -3.67 -5.50 𝑆9 

0.00 0.00 0.00 -5.00 0.00 -2.50 -2.50 -10.00 0.00 -2.50 -2.50 -10.00 0.00 -3.33 -3.33 -10.00 𝑆10 

0.00 0.00 0.00 -2.75 0.00 0.00 0.00 -4.40 0.00 0.00 -3.67 -5.50 0.00 0.00 -3.67 -5.50 𝑆11 

0.50 -1.33 0.33 -2.50 -2.25 -5.00 -2.50 -5.33 0.25 -2.50 0.00 -2.00 -2.50 -5.25 -2.75 -5.50 𝑆12 

0.33 0.33 0.00 -0.33 0.00 0.00 -0.33 -0.67 -0.20 -0.20 1.00 1.00 -0.50 -0.50 1.00 1.00 𝑆13 

0.00 0.00 -0.33 -2.00 0.00 0.00 -0.67 -3.00 -0.50 -2.40 1.00 -4.00 -0.50 -2.40 1.00 -4.00 𝑆14 

0.00 0.00 -0.33 -0.50 0.00 0.00 -0.50 -0.67 -0.50 -0.50 1.00 1.00 -0.50 -0.50 1.00 1.00 𝑆15 

 

Table 5 . the payoff matrix  of repeated prisoner’s dilemma between relatives with error in implementation with Axelrod values (R=0,T=1,S=-1,P=-10) and r=0.999  

𝑆15 𝑆14 𝑆13 𝑆12 𝑆11 𝑆10 𝑆9 𝑆8 𝑆7 𝑆6 𝑆5 𝑆4 𝑆3 𝑆2 𝑆1 𝑆0 

 

 

0.00 -6.66 0.00 -9.99 -9.99 -19.99 -9.99 -19.99 0.00 -9.99 0.00 -13.33 -9.99 -19.99 -9.99 -19.99 𝑆0 

0.00 0.00 0.00 -5.00 -6.66 -6.66 -6.66 -10.00 -5.00 0.00 -6.66 -8.00 -10.00 -6.66 -10.00 -10.00 𝑆1 

0.00 -4.00 0.00 -9.99 0.00 -6.66 -6.66 -19.99 -6.66 -19.99 -6.66 -19.99 0.00 -7.50 -10.00 -19.99 𝑆2 

0.00 0.00 0.00 -5.00 0.00 0.00 -5.00 -10.00 -10.00 -5.00 -10.00 -10.00 -5.00 0.00 -10.00 -10.00 𝑆3 

0.00 -6.66 0.00 -6.66 -9.99 -19.99 -8.00 -13.33 0.00 -13.33 0.00 -10.00 -9.99 -19.99 -8.00 -13.33 𝑆4 

0.00 0.00 0.00 0.00 -6.66 -5.00 -5.00 0.00 -6.66 -5.00 -5.00 0.00 -10.00 -6.66 -6.66 0.00 𝑆5 

0.00 -4.00 0.00 -5.00 -6.66 -5.00 0.00 -6.66 -6.66 -19.99 -5.00 -9.99 -5.00 -19.99 0.00 -10.00 𝑆6 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -10.00 -6.66 -6.66 0.00 -10.00 -6.66 -5.00 0.00 𝑆7 

0.00 0.00 0.00 -9.99 -8.00 -19.99 -8.00 -19.99 0.00 -6.66 0.00 -13.33 -9.99 -19.99 -9.99 -19.99 𝑆8 

0.00 0.00 0.00 -5.00 0.00 -5.00 0.00 -8.00 0.00 0.00 -5.00 -8.00 -5.00 -6.66 -6.66 -10.00 𝑆9 

0.00 0.00 0.00 -10.00 0.00 -5.00 -5.00 -19.99 0.00 -5.00 -5.00 -19.99 0.00 -6.66 -6.66 -19.99 𝑆10 

0.00 0.00 0.00 -5.00 0.00 0.00 0.00 -8.00 0.00 0.00 -6.66 -10.00 0.00 0.00 -6.66 -10.00 𝑆11 

0.00 -3.33 0.00 -5.00 -5.00 -10.00 -5.00 -10.00 0.00 -5.00 0.00 -3.33 -5.00 -10.00 -5.00 -10.00 𝑆12 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 𝑆13 

0.00 0.00 0.00 -3.33 0.00 0.00 0.00 -5.00 0.00 -4.00 0.00 -6.66 0.00 -4.00 0.00 -6.66 𝑆14 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 𝑆15 
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Table 6 . the payoff matrix  of repeated prisoner’s dilemma between relatives with error in implementation with Axelrod values (R=5,T=1,S=0,P=3) and r=0.0001 

𝑆15 𝑆14 𝑆13 𝑆12 𝑆11 𝑆10 𝑆9 𝑆8 𝑆7 𝑆6 𝑆5 𝑆4 𝑆3 𝑆2 𝑆1 𝑆0  

1.00 1.67 1.00 2.00 2.00 3.00 2.00 3.00 1.00 2.00 1.00 2.33 2.00 3.00 2.00 3.00 𝑆0 

1.00 1.00 1.00 1.25 3.00 1.33 3.00 1.50 2.50 1.00 3.00 1.40 4.00 1.33 4.00 1.50 𝑆1 

3.00 3.00 3.00 3.00 0.50 1.33 1.33 3.00 3.00 3.00 3.00 3.00 0.50 1.75 4.00 3.00 𝑆2 

3.00 3.00 3.00 2.25 0.50 0.50 2.25 1.50 4.00 2.25 4.00 1.50 2.25 0.50 4.00 1.50 𝑆3 

1.00 1.67 1.00 1.50 2.00 3.00 1.60 2.00 1.00 2.33 1.00 1.75 2.00 3.00 1.60 2.00 𝑆4 

1.00 1.00 1.00 0.50 3.00 2.25 2.25 1.00 3.00 2.25 2.25 1.00 4.00 2.67 2.67 1.00 𝑆5 

3.00 3.00 2.40 2.25 2.67 2.25 1.00 1.00 2.67 3.00 2.25 2.00 2.25 3.00 1.00 1.50 𝑆6 

3.00 3.00 2.40 1.50 2.00 2.00 1.00 1.00 4.00 2.67 2.67 1.00 4.00 2.67 2.00 1.00 𝑆7 

2.33 2.33 2.33 2.67 2.60 3.00 2.60 3.00 1.00 1.67 1.00 2.33 2.00 3.00 2.00 3.00 𝑆8 

3.00 2.33 3.67 2.25 5.00 2.25 5.00 2.20 1.00 1.00 2.25 1.40 2.25 1.33 2.67 1.50 𝑆9 

5.00 5.00 5.00 4.00 2.00 2.25 2.25 3.00 2.00 2.25 2.25 3.00 0.50 1.33 1.33 3.00 𝑆10 

5.00 5.00 5.00 3.25 2.75 2.00 5.00 2.20 2.00 2.00 2.67 1.50 0.50 0.50 2.67 1.50 𝑆11 

3.00 3.33 2.17 2.25 3.50 4.00 2.25 2.33 1.75 2.25 0.50 0.67 2.25 2.75 1.00 1.50 𝑆12 

3.67 3.67 2.75 1.83 5.00 5.00 3.33 1.67 2.20 2.20 1.00 1.00 2.50 2.50 1.00 1.00 𝑆13 

5.00 5.00 3.33 3.00 5.00 5.00 1.67 2.00 2.50 2.60 1.00 1.00 2.50 2.60 1.00 1.00 𝑆14 

5.00 5.00 3.33 2.50 5.00 5.00 2.50 1.67 2.50 2.50 1.00 1.00 2.50 2.50 1.00 1.00 𝑆15 
 

Table 7 . the payoff matrix  of repeated prisoner’s dilemma between relatives with error in implementation with Axelrod values (R=5,T=1,S=0,P=3) and r=0.999 

𝑆15 𝑆14 𝑆13 𝑆12 𝑆11 𝑆10 𝑆9 𝑆8 𝑆7 𝑆6 𝑆5 𝑆4 𝑆3 𝑆2 𝑆1 𝑆0  

1.00 2.67 1.00 3.50 3.50 6.00 3.50 6.00 1.00 3.50 1.00 4.33 3.50 6.00 3.50 6.00 𝑆0 

1.00 1.00 1.00 2.25 5.66 2.67 5.66 3.50 4.50 1.00 5.66 3.00 8.00 2.67 8.00 3.50 𝑆1 

5.50 5.60 5.50 5.75 1.00 2.67 2.67 6.00 5.66 6.00 5.66 6.00 1.00 2.75 8.00 6.00 𝑆2 

5.50 5.50 5.50 4.50 1.00 1.00 4.50 3.50 8.00 4.50 8.00 3.50 4.50 1.00 8.00 3.50 𝑆3 

1.00 2.67 1.00 2.67 3.50 6.00 3.00 4.33 1.00 4.33 1.00 3.50 3.50 6.00 3.00 4.33 𝑆4 

1.00 1.00 1.00 1.00 5.66 4.50 4.50 1.00 5.66 4.50 4.50 1.00 8.00 5.66 5.66 1.00 𝑆5 

5.50 5.60 4.60 4.50 5.66 4.50 1.00 2.67 5.66 6.00 4.50 3.33 4.50 6.00 1.00 3.50 𝑆6 

5.50 5.50 4.60 3.25 4.00 4.00 1.00 1.00 8.00 5.66 5.66 1.00 8.00 5.66 4.50 1.00 𝑆7 

4.00 4.00 4.00 5.00 4.80 6.00 4.80 6.00 1.00 2.67 1.00 4.33 3.50 6.00 3.50 6.00 𝑆8 

5.50 4.00 7.00 4.50 10.00 4.50 10.00 4.80 1.00 1.00 4.50 3.00 4.50 2.67 5.66 3.50 𝑆9 

10.00 10.00 10.00 8.00 4.00 4.50 4.50 6.00 4.00 4.50 4.50 6.00 1.00 2.67 2.67 6.00 𝑆10 

10.00 10.00 10.00 6.75 5.50 4.00 10.00 4.80 4.00 4.00 5.66 3.50 1.00 1.00 5.66 3.50 𝑆11 

5.50 6.33 4.00 4.50 6.75 8.00 4.50 5.00 3.25 4.50 1.00 1.67 4.50 5.75 2.25 3.50 𝑆12 

7.00 7.00 5.50 4.00 10.00 10.00 7.00 4.00 4.60 4.60 1.00 1.00 5.50 5.50 1.00 1.00 𝑆13 

10.00 10.00 7.00 6.33 10.00 10.00 4.00 4.50 5.50 5.60 1.00 2.67 5.50 5.60 1.00 2.67 𝑆14 

10.00 10.00 7.00 5.50 10.00 10.00 5.50 4.00 5.50 5.50 1.00 1.00 5.50 5.50 1.00 1.00 𝑆15 
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